Stromal protein βig-h3 reprogrammes
tumour microenvironment
in pancreatic cancer

Goehrig D, Nigri J, Samain R, Wu Z, Cappello P, Gabiane G, Zhang X, Zhao Y, Kim IS, Chanal M, Curto R, Hervieu V, de la Fouchardière C, Novelli F, Milani P, Tomasini R, Bousquet C, Bertolino P, Hennino A.

 

Extrait

OBJECTIVE : Pancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer.

DESIGN : We performed studies with p48-Cre;Kraspdx1-Cre;Kras;Ink4a/Arf , pdx1-Cre;Kras; p53 mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-βig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy.

RESULTS : We identified βig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that βig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting βig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting βig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment.

CONCLUSIONS : Our data indicate that targeting stromal extracellular matrix protein βig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present βig-h3 as a novel immunological target in pancreatic cancer.

Vous souhaitez en savoir plus ?

Téléchargez notre publication scientifique en intégralité !

Découvrez nos autres publications

Stiffness measurement is a biomarker of skin aging in vivo

Runel G, Cario M, Lopez-Ramirez N, Malbouyres M, Ruggiero F, Bernard L, Puisieux A, Caramel J, Chlasta J, Masse I.

 

Biomechanical Properties of Cancer Cells

Runel G, Lopez-Ramirez N, Chlasta J, Masse I.

 

Consulter l’abstract

Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis

Lamiré L-A, Milani P, Runel G, Kiss A, Arias L, Vergier B, de Bossoreille S, Das P, Cluet D, Boudaoud A, Grammont M. November 30, 2020.

 

Consulter l’abstract

Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane

Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Matrix Biology

 

Changes in nano-mechanical properties of human epidermal cornified cells depending on their proximity to the skin surface

Milani P, Chlasta J, Abdayem R, Kezic S, Haftek M. J Mol Recognit. 22 mai 2018;e2722.

 

Consulter l’abstract

Variations in basement membrane mechanics are linked to epithelial morphogenesis

Chlasta J, Milani P, Runel G, Duteyrat JL, Arias L, Lamiré LA, Boudaoud A, Grammont M. Development 2017 : doi: 10.1242/dev.152652

 

Consulter l’abstract

Mechanical Shielding in Plant Nuclei

Goswami R, Asnacios A, Milani P, Graindorge S, Houlné G, Mutterer J, Hamant O, Chabouté M-E.

 

Consulter l’abstract

Changes in nano-mechanical properties of human epidermal cornified cells in children with atopic dermatitis

Haftek M, McAleer MA, Jakasa I, Irwin McLean WH, Kezic S, Irvine AD.

 

Consulter l’abstract

KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidospis

Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, Fobis-Loisy I, Gaude T.

 

Consulter l’abstract