Biomechanical Properties of Cancer Cells

Runel G, Lopez-Ramirez N, Chlasta J, Masse I.

 

Abstract

Since the crucial role of the microenvironment has been highlighted, many studies have been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding environment. Despite the search in recent years for molecular biomarkers to try to classify and stratify cancers, much effort needs to be made to take account of morphological and nanomechanical parameters that could provide supplementary information concerning tissue complexity adaptation during cancer development. The biomechanical properties of cancer cells and their surrounding extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis and prognosis. The present review first describes the main methods used to study the mechanical properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we depict how studying interaction of tumor cells with their surrounding microenvironment is crucial to integrating biomechanical properties in our understanding of tumor growth and local invasion.

Interested in this scientific publication?

Download the full version!

Discover our other publications

Stiffness measurement is a biomarker of skin aging in vivo

Runel G, Cario M, Lopez-Ramirez N, Malbouyres M, Ruggiero F, Bernard L, Puisieux A, Caramel J, Chlasta J, Masse I.

 

Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis

Lamiré L-A, Milani P, Runel G, Kiss A, Arias L, Vergier B, de Bossoreille S, Das P, Cluet D, Boudaoud A, Grammont M. November 30, 2020.

 

Consult the abstract

Changes in nano-mechanical properties of human epidermal cornified cells depending on their proximity to the skin surface

Milani P, Chlasta J, Abdayem R, Kezic S, Haftek M. J Mol Recognit. 22 mai 2018;e2722.

 

Consult the abstract

Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane

Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Matrix Biology

 

Variations in basement membrane mechanics are linked to epithelial morphogenesis

Chlasta J, Milani P, Runel G, Duteyrat JL, Arias L, Lamiré LA, Boudaoud A, Grammont M. Development 2017 : doi: 10.1242/dev.152652

 

Consult the abstract

Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer

Goehrig D, Nigri J, Samain R, Wu Z, Cappello P, Gabiane G, Zhang X, Zhao Y, Kim IS, Chanal M, Curto R, Hervieu V, de la Fouchardière C, Novelli F, Milani P, Tomasini R, Bousquet C, Bertolino P, Hennino A.

 

Consult the abstract

Mechanical Shielding in Plant Nuclei

Goswami R, Asnacios A, Milani P, Graindorge S, Houlné G, Mutterer J, Hamant O, Chabouté M-E.

 

Consult the abstract

Changes in nano-mechanical properties of human epidermal cornified cells in children with atopic dermatitis

Haftek M, McAleer MA, Jakasa I, Irwin McLean WH, Kezic S, Irvine AD.

 

Consult the abstract

KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidospis

Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, Fobis-Loisy I, Gaude T.

 

Consult the abstract